about summary refs log tree commit diff stats
path: root/crates/core/src/expressions/mod.rs
blob: c5abebfa58aed16ed13de5f02c542e29b9bee264 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
//! Common representation of mathematical expressions.

use alloc::{
    alloc::{Allocator, Global},
    collections::TryReserveError,
    string::String,
    vec::Vec,
};
use core::{hint, iter::TrustedLen};
use generativity::{Guard, Id};

use crate::numerics::rational::Rational;

#[cfg(feature = "core-fmt")]
use core::fmt;

#[cfg(feature = "core-error")]
use core::error;

//TODO: consider topological sorting of the expression's internals as this
//      may be better for performance.
//TODO: consider garbage collection of unreachable nodes (and their
//      children).
//TODO: if we add garbage collection, support marking a node for deletion
//      when garbage collection is performed.
//TODO: consider renaming `OpenExpression` to something else.
//TODO: add more thorough documentation, along the lines of the standard
//      library's `Vec`, given how this is a very fundamental type.

/// Representation of a mathematical expression.
///
/// Components of the expression are maintained in a vector where they are
/// linked to each other by their indices. Indices always point to another
/// existing node.
///
/// # Guarantees
///
/// - The expression contains no cycles.
/// - All references to other nodes are valid.
/// - All references to interned strings are valid.
/// - No strings are interned more than once.
#[derive(Clone)]
#[cfg_attr(feature = "core-fmt", derive(Debug))]
pub struct Expression<A = Global>
where
    A: Allocator + Clone,
{
    /// List of nodes linked to each other by their indices.
    pub(crate) inner: Vec<NodeInternal, A>,

    /// List of interned strings.
    pub(crate) interns: Vec<String, A>,

    /// Root node of the expression.
    pub(crate) root: Option<NodeIndexInternal>,
}

impl Expression<Global> {
    /// Constructs an empty expression.
    pub fn new() -> Self {
        Self::new_in(Global)
    }
}

impl<A> Expression<A>
where
    A: Allocator + Clone,
{
    /// Constructs an empty expression using the provided [`Allocator`].
    pub fn new_in(alloc: A) -> Self {
        Self {
            inner: Vec::new_in(alloc.clone()),
            interns: Vec::new_in(alloc),
            root: None,
        }
    }

    /// Clears the expression, removing all nodes and associated information.
    pub fn clear(&mut self) {
        self.inner.clear();
        self.interns.clear();
        self.root = None;
    }

    /// Opens up the expression for additive operations and indexing.
    ///
    /// While in this state, no destructive operations may be done, such as
    /// garbage collection and sorting of the node list.
    pub fn open<'id>(self, guard: Guard<'id>) -> OpenExpression<'id, A> {
        OpenExpression(self, guard.into())
    }

    /// Inserts a [`NodeInternal`] into the node list and returns the index.
    ///
    /// # Errors
    ///
    /// Returns an error if storage was unable to be reserved for the new
    /// node.
    fn insert_node(
        &mut self,
        node: NodeInternal,
    ) -> Result<NodeIndexInternal, Error> {
        self.inner.try_reserve(1)?;
        //SAFETY: we just reserved space for this element
        unsafe { self.inner.push_within_capacity(node).unwrap_unchecked() }
        Ok(NodeIndexInternal(self.inner.len() - 1))
    }

    /// Inserts a [`&str`] into the intern list if it doesn't already exist
    /// and returns the index.
    ///
    /// # Errors
    ///
    /// Returns an error if storage was unable to be reserved for the new
    /// string.
    fn insert_string(
        &mut self,
        string: impl AsRef<str>,
    ) -> Result<StringIndexInternal, Error> {
        if let Some(i) =
            self.interns.iter().position(|s| s == string.as_ref())
        {
            return Ok(StringIndexInternal(i));
        }

        self.interns.try_reserve(1)?;
        //SAFETY: we just reserved space for this element
        unsafe {
            self.interns
                .push_within_capacity(string.as_ref().into())
                .unwrap_unchecked()
        }
        Ok(StringIndexInternal(self.interns.len() - 1))
    }

    /// Returns the number of nodes within this expression.
    pub fn len(&self) -> usize {
        self.inner.len()
    }

    /// Indicates if the expression has no nodes.
    pub fn is_empty(&self) -> bool {
        self.inner.is_empty()
    }
}

impl Default for Expression<Global> {
    fn default() -> Self {
        Self::new()
    }
}

/// Representation of a mathematical expression.
///
/// This is a variant of [`Expression`] in a state where it is able to be
/// written to and indexed.
#[derive(Clone)]
#[cfg_attr(feature = "core-fmt", derive(Debug))]
pub struct OpenExpression<'id, A>(Expression<A>, Id<'id>)
where
    A: Allocator + Clone;

impl<'id, A> OpenExpression<'id, A>
where
    A: Allocator + Clone,
{
    /// Adds a new scalar value to the expression.
    ///
    /// # Errors
    ///
    /// Returns an error if storage was unable to be reserved for the new
    /// scalar value.
    pub fn insert_scalar(
        &mut self,
        value: impl Into<ScalarValue>,
    ) -> Result<NodeIndex<'id>, Error> {
        Ok((
            self.0.insert_node(NodeInternal::Scalar(value.into()))?,
            self.1,
        )
            .into())
    }

    /// Adds a new variable to the expression.
    ///
    /// # Errors
    ///
    /// Returns an error if storage was unable to be reserved for the new
    /// variable.
    pub fn insert_variable(
        &mut self,
        name: impl AsRef<str>,
    ) -> Result<NodeIndex<'id>, Error> {
        let name = self.0.insert_string(name)?;
        Ok(
            (self.0.insert_node(NodeInternal::Variable(name))?, self.1)
                .into(),
        )
    }

    /// Adds a new operation to the expression.
    ///
    /// # Errors
    ///
    /// Returns an error if storage was unable to be reserved for the new
    /// operation or if one of the children of the node would have been a
    /// [`Node::Join`].
    pub fn insert_operation<Arguments>(
        &mut self,
        operator: impl AsRef<str>,
        arguments: Arguments,
    ) -> Result<NodeIndex<'id>, Error>
    where
        Arguments: IntoIterator<Item = NodeIndex<'id>>,
        Arguments::IntoIter: TrustedLen,
    {
        let operator = self.0.insert_string(operator)?;
        let mut arguments = arguments.into_iter();
        let n_arguments = arguments.size_hint().0;
        if n_arguments == 2 {
            //SAFETY: the iterator is required to implement `TrustedLen`
            let first = unsafe { arguments.next().unwrap_unchecked() };

            //SAFETY: the iterator is required to implement `TrustedLen`
            let second = unsafe { arguments.next().unwrap_unchecked() };

            if matches!(
                //SAFETY: lifetime branding ensures this index is valid
                unsafe { self.0.inner.get_unchecked(first.0) },
                NodeInternal::Join(_, _)
            ) || matches!(
                //SAFETY: lifetime branding ensures this index is valid
                unsafe { self.0.inner.get_unchecked(second.0) },
                NodeInternal::Join(_, _)
            ) {
                return Err(Error::InvalidChild);
            }

            Ok((
                self.0.insert_node(NodeInternal::BinaryOperation(
                    operator,
                    first.into(),
                    second.into(),
                ))?,
                self.1,
            )
                .into())
        } else {
            let number_of_joins = n_arguments.saturating_sub(1);
            self.0.inner.try_reserve(number_of_joins + 1)?;

            //SAFETY: the iterator is required to implement `TrustedLen` so
            //        we will have reserved enough space for these in addition
            //        to guaranteeing the noted elements exist
            //
            //        additionally, because of our lifetime branding, all
            //        indices referenced by lifetime-branded node indices are
            //        valid
            unsafe {
                self.0
                    .inner
                    .push_within_capacity(match n_arguments {
                        0 => NodeInternal::Operation(operator, None),
                        1 => {
                            let argument =
                                arguments.next().unwrap_unchecked();
                            if matches!(
                                self.0.inner.get_unchecked(argument.0),
                                NodeInternal::Join(_, _)
                            ) {
                                return Err(Error::InvalidChild);
                            }

                            NodeInternal::Operation(
                                operator,
                                Some(argument.into()),
                            )
                        }
                        //NOTE: we know that we will be adding at least one
                        //      more slot to hold an `NodeInternal::Join`
                        _ => NodeInternal::Operation(
                            operator,
                            Some(NodeIndexInternal(self.0.inner.len() + 1)),
                        ),
                    })
                    .unwrap_unchecked()
            }
            let operation_index = NodeIndexInternal(self.0.inner.len() - 1);

            //NOTE: we are exclusively inserting `NodeInternal::Join`s now
            for (i, argument) in arguments.enumerate() {
                if matches!(
                    //SAFETY: lifetime branding ensures this index is valid
                    unsafe { self.0.inner.get_unchecked(argument.0) },
                    NodeInternal::Join(_, _)
                ) {
                    //NOTE: leaving the inner vector in this state is not
                    //      invalid as nothing will be able to reference any
                    //      of the slots allocated already
                    //
                    //      when it is added, garbage collection will clean up
                    //      after this if it happens
                    return Err(Error::InvalidChild);
                }

                if i != n_arguments - 1 {
                    //SAFETY: we know that we have reserved enough space for
                    //        each join by this point
                    unsafe {
                        self.0
                            .inner
                            .push_within_capacity(NodeInternal::Join(
                                argument.into(),
                                NodeIndexInternal(self.0.inner.len() + 1),
                            ))
                            .unwrap_unchecked()
                    }
                } else {
                    let last_index = self.0.inner.len() - 1;

                    if let &mut NodeInternal::Join(_, ref mut second) =
                        //SAFETY: we know that if we are at this point,
                        //        the current last element exists
                        unsafe {
                            self.0.inner.get_unchecked_mut(last_index)
                        }
                    {
                        *second = argument.into();
                    } else {
                        //SAFETY: we know by this point that this last
                        //        element must be `NodeInternal::Join`
                        unsafe { hint::unreachable_unchecked() }
                    }
                }
            }

            Ok((operation_index, self.1).into())
        }
    }

    /// Sets the root node of the expression.
    pub fn set_root_node(&mut self, node: NodeIndex<'id>) {
        self.0.root = Some(node.into());
    }

    /// Closes the expression to additive operations and being indexed.
    pub fn close(self) -> Expression<A> {
        self.0
    }

    /// Returns the number of nodes within this expression.
    pub fn len(&self) -> usize {
        self.0.inner.len()
    }

    /// Indicates if the expression has no nodes.
    pub fn is_empty(&self) -> bool {
        self.0.inner.is_empty()
    }

    /// Gets the root node of the expression, if it exists.
    pub fn root_node(&self) -> Option<NodeIndex<'id>> {
        Some((self.0.root?, self.1).into())
    }

    /// Takes the expression's root node.
    pub fn take_root_node(&mut self) -> Option<NodeIndex<'id>> {
        Some((self.0.root.take()?, self.1).into())
    }

    /// Retrieves the indicated node from the expression.
    pub fn node(&self, index: NodeIndex<'id>) -> Node<'id> {
        //SAFETY: by the lifetime, this is guaranteed to be a valid index
        (
            unsafe { self.0.inner.get_unchecked(index.0) }.clone(),
            self.1,
        )
            .into()
    }

    /// Retrieves the indicated string from the expression.
    pub fn string(&self, index: StringIndex<'id>) -> &str {
        //SAFETY: by the lifetime, this is guaranteed to be a valid index
        unsafe { self.0.interns.get_unchecked(index.0) }
    }

    /// Returns an iterator over the children of the node.
    pub fn children_of<'a>(
        &'a self,
        index: NodeIndex<'id>,
    ) -> Children<'a, 'id> {
        Children::new(&self.0.inner, index)
    }
}

/// Iterator over the children of a [`Node`].
pub struct Children<'a, 'id> {
    /// The node we are currently at.
    ///
    /// If the node given to the constructor was a [`Node::Scalar`],
    /// [`Node::Variable`], or a [`Node::Operation`] with `None` as the
    /// second parameter, this must be `None`, and hence this may never be
    /// referencing a node of those kinds.
    current: Option<NodeIndexInternal>,

    /// Whether or not we are at the "second" part of the node.
    ///
    /// This is only relevant for [`Node::BinaryOperation`] as it is not
    /// clear which of the children are being referenced.
    second: bool,

    /// Reference to the internal storage of the [`Expression`].
    inner: &'a [NodeInternal],

    /// Lifetime tying it to the open state of the [`Expression`].
    id: Id<'id>,
}

impl<'a, 'id> Children<'a, 'id> {
    /// Creates a new iterator over the children of a [`Node`].
    fn new(inner: &'a [NodeInternal], index: NodeIndex<'id>) -> Self {
        let id = index.1;
        if matches!(
            //SAFETY: by the lifetime, this is guaranteed to be a valid
            //        index
            unsafe { inner.get_unchecked(index.0) },
            NodeInternal::Scalar(_)
                | NodeInternal::Variable(_)
                | NodeInternal::Operation(_, None)
        ) {
            Self {
                current: None,
                second: false,
                inner,
                id,
            }
        } else {
            Self {
                current: Some(index.into()),
                second: false,
                inner,
                id,
            }
        }
    }
}

impl<'a, 'id> Iterator for Children<'a, 'id> {
    type Item = NodeIndex<'id>;

    fn next(&mut self) -> Option<Self::Item> {
        if let Some(current) = self.current {
            //SAFETY: by the lifetime, this is guaranteed to be a valid index
            let current = unsafe { self.inner.get_unchecked(current.0) };
            Some(
                (
                    match *current {
                        NodeInternal::Operation(_, Some(index)) => {
                            //SAFETY: all internal indices are guaranteed to
                            //        be valid
                            let next =
                                unsafe { self.inner.get_unchecked(index.0) };

                            if let NodeInternal::Join(child_index, _) = *next
                            {
                                self.current = Some(index);
                                child_index
                            } else {
                                self.current = None;
                                index
                            }
                        }
                        NodeInternal::Join(_, index) => {
                            //SAFETY: all internal indices are guaranteed to
                            //        be valid
                            let next =
                                unsafe { self.inner.get_unchecked(index.0) };

                            if let NodeInternal::Join(child_index, _) = *next
                            {
                                self.current = Some(index);
                                child_index
                            } else {
                                self.current = None;
                                index
                            }
                        }
                        NodeInternal::BinaryOperation(_, index, _)
                            if !self.second =>
                        {
                            self.second = true;
                            index
                        }
                        NodeInternal::BinaryOperation(_, _, index) => {
                            self.current = None;
                            index
                        }
                        _ => unreachable!(),
                    },
                    self.id,
                )
                    .into(),
            )
        } else {
            None
        }
    }
}

/// Index into the node vector of [`Expression`].
#[repr(transparent)]
#[derive(Eq, PartialEq, Copy, Clone, Hash)]
#[cfg_attr(feature = "core-fmt", derive(Debug))]
//NOTE: false positive, see https://github.com/CAD97/generativity/issues/13
#[allow(repr_transparent_external_private_fields)]
pub struct NodeIndex<'id>(usize, Id<'id>);

impl<'id> From<(NodeIndexInternal, Id<'id>)> for NodeIndex<'id> {
    fn from((index, id): (NodeIndexInternal, Id<'id>)) -> Self {
        Self(index.0, id)
    }
}

/// Index into the node vector of [`Expression`].
///
/// This is only for internal use to avoid the presence of explicit lifetimes
/// on [`Expression`] members.
#[repr(transparent)]
#[derive(Eq, PartialEq, Copy, Clone, Hash)]
#[cfg_attr(feature = "core-fmt", derive(Debug))]
pub(crate) struct NodeIndexInternal(usize);

impl From<NodeIndex<'_>> for NodeIndexInternal {
    fn from(NodeIndex(index, _): NodeIndex<'_>) -> Self {
        Self(index)
    }
}

/// Index into the string intern vector of [`Expression`].
#[repr(transparent)]
#[derive(Eq, PartialEq, Copy, Clone, Hash)]
#[cfg_attr(feature = "core-fmt", derive(Debug))]
//NOTE: false positive, see https://github.com/CAD97/generativity/issues/13
#[allow(repr_transparent_external_private_fields)]
pub struct StringIndex<'id>(usize, Id<'id>);

impl<'id> From<(StringIndexInternal, Id<'id>)> for StringIndex<'id> {
    fn from((index, id): (StringIndexInternal, Id<'id>)) -> Self {
        Self(index.0, id)
    }
}

/// Index into the string intern vector of [`Expression`].
///
/// This is only for internal use to avoid the presence of explicit lifetimes
/// on [`Expression`] members.
#[repr(transparent)]
#[derive(Eq, PartialEq, Copy, Clone, Hash)]
#[cfg_attr(feature = "core-fmt", derive(Debug))]
pub(crate) struct StringIndexInternal(usize);

impl From<StringIndex<'_>> for StringIndexInternal {
    fn from(StringIndex(index, _): StringIndex<'_>) -> Self {
        Self(index)
    }
}

/// Internal representation of an expression node.
#[non_exhaustive]
#[derive(PartialEq, Clone)]
#[cfg_attr(feature = "core-fmt", derive(Debug))]
pub(crate) enum NodeInternal {
    /// Operation over other nodes.
    ///
    /// The first component indicates the kind of operation and the second is
    /// the first argument. Several arguments may be represented through the
    /// use of `Join`.
    Operation(StringIndexInternal, Option<NodeIndexInternal>),

    /// Binary operation.
    ///
    /// This is special cased due to how common they are. `Join`s are not
    /// permitted to be referenced by the indices here.
    BinaryOperation(
        StringIndexInternal,
        NodeIndexInternal,
        NodeIndexInternal,
    ),

    /// Joins one `NodeInternal` with another in a sequence, with the first
    /// coming before the second.
    ///
    /// The first `NodeIndexInternal` must not be a `Join`.
    Join(NodeIndexInternal, NodeIndexInternal),

    /// Scalar value.
    Scalar(ScalarValue),

    /// Variable.
    Variable(StringIndexInternal),
}

/// Node in an expression.
#[non_exhaustive]
#[derive(PartialEq, Clone)]
#[cfg_attr(feature = "core-fmt", derive(Debug))]
pub enum Node<'id> {
    /// Operation over other nodes.
    ///
    /// The first component indicates the kind of operation and the second is
    /// the first argument. Several arguments may be represented through the
    /// use of `Join`.
    Operation(StringIndex<'id>, Option<NodeIndex<'id>>),

    /// Binary operation.
    ///
    /// This is special cased due to how common they are. `Join`s are not
    /// permitted to be referenced by the indices here.
    BinaryOperation(StringIndex<'id>, NodeIndex<'id>, NodeIndex<'id>),

    /// Joins one `NodeInternal` with another in a sequence, with the first
    /// coming before the second.
    ///
    /// The first `NodeIndexInternal` must not be a `Join`.
    Join(NodeIndex<'id>, NodeIndex<'id>),

    /// Scalar value.
    Scalar(ScalarValue),

    /// Variable.
    Variable(StringIndex<'id>),
}

impl<'id> From<(NodeInternal, Id<'id>)> for Node<'id> {
    fn from((node, id): (NodeInternal, Id<'id>)) -> Self {
        match node {
            NodeInternal::Operation(s, n) => {
                Node::Operation((s, id).into(), n.map(|n| (n, id).into()))
            }
            NodeInternal::BinaryOperation(s, n1, n2) => {
                Node::BinaryOperation(
                    (s, id).into(),
                    (n1, id).into(),
                    (n2, id).into(),
                )
            }
            NodeInternal::Join(n1, n2) => {
                Node::Join((n1, id).into(), (n2, id).into())
            }
            NodeInternal::Scalar(s) => Node::Scalar(s),
            NodeInternal::Variable(s) => Node::Variable((s, id).into()),
        }
    }
}

/// Scalar value.
#[non_exhaustive]
#[derive(PartialEq, Clone)]
#[cfg_attr(feature = "core-fmt", derive(Debug))]
pub enum ScalarValue {
    /// Unsigned integer.
    UnsignedInteger(u64),

    /// Signed integer.
    Integer(i64),

    /// Floating point value.
    Float(f64),

    /// Rational number with unsigned integer components.
    UnsignedIntegerRational(Rational<u64>),

    /// Rational number with signed integer components.
    SignedIntegerRational(Rational<i64>),
}

/// Representation of an error that occurred within [`Expression`].
#[non_exhaustive]
#[derive(Eq, PartialEq)]
#[cfg_attr(feature = "core-fmt", derive(Debug))]
pub enum Error {
    /// Memory reservation error.
    TryReserveError(TryReserveError),

    /// Invalid child node.
    ///
    /// This occurs when you attempt to pass an index that points to a
    /// [`Node::Join`] as a child of an operation.
    InvalidChild,
}

impl From<TryReserveError> for Error {
    fn from(e: TryReserveError) -> Self {
        Self::TryReserveError(e)
    }
}

#[cfg(feature = "core-fmt")]
impl fmt::Display for Error {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
        let reason = match self {
            Error::TryReserveError(_) => "unable to allocate memory",
            Error::InvalidChild => "invalid child node",
        };
        fmt.write_str(reason)
    }
}

#[cfg(feature = "core-error")]
impl error::Error for Error {}

#[cfg(all(test, feature = "core-error"))]
mod test {
    #![allow(clippy::expect_used)]

    use super::*;

    use generativity::make_guard;
    use proptest::prelude::*;
    use proptest_state_machine::{
        ReferenceStateMachine, StateMachineTest, prop_state_machine,
    };
    use std::{assert_matches::assert_matches, collections::HashMap};

    #[test]
    fn simple() {
        make_guard!(g);
        let mut expr = Expression::new().open(g);

        let a = expr
            .insert_variable("apples")
            .expect("unable to insert a variable");
        assert_eq!(expr.children_of(a).collect::<Vec<_>>().as_slice(), &[]);

        let b = expr
            .insert_variable("bananas")
            .expect("unable to insert a variable");
        let c = expr
            .insert_variable("oranges")
            .expect("unable to insert a variable");

        let sin = expr
            .insert_operation("sin", [a])
            .expect("unable to insert an operation");
        assert_eq!(
            expr.children_of(sin).collect::<Vec<_>>().as_slice(),
            &[a]
        );

        let sum = expr
            .insert_operation("sum", [a, b, c])
            .expect("unable to insert an operation");
        assert_eq!(
            expr.children_of(sum).collect::<Vec<_>>().as_slice(),
            &[a, b, c]
        );

        let product = expr
            .insert_operation("*", [sin, sum])
            .expect("unable to insert an operation");
        assert_eq!(
            expr.children_of(product).collect::<Vec<_>>().as_slice(),
            &[sin, sum]
        );

        expr.close();
    }

    /// Reference state machine for [`Expression`]s.
    ///
    /// Models [`Expression`]s as a root node index, a vector of nodes, a
    /// mapping of parent node indices to a vector of child node indices,
    /// a vector of valid indices, and whether or not it is currently open.
    struct ExpressionReference;

    /// State used by the reference state machine.
    #[derive(Clone, Debug, Default)]
    struct ExpressionReferenceState {
        /// Index of the root node in the node vector.
        pub root: Option<usize>,

        /// Vector of nodes in the expression.
        pub nodes: Vec<NodeRep>,

        /// Mapping of parent node indices to child node indices.
        pub children: HashMap<usize, Vec<usize>>,

        /// The current list of valid indices.
        pub valid_indices: Vec<usize>,

        /// Whether or not the expression is open.
        ///
        /// If it is open, then additive operations and indexing is allowed.
        /// Otherwise, operations that may invalidate indices such as node
        /// removal, sorting, etc are allowed.
        pub is_open: bool,
    }

    /// Simplified [`NodeInternal`] representation for the [`HashMap`] backed
    /// graph.
    #[derive(Clone, Debug)]
    enum NodeRep {
        /// Operation over other nodes.
        Operation(String),

        /// Scalar value.
        Scalar(ScalarValue),

        /// Variable.
        Variable(String),
    }

    /// Possible transitions for the state machine.
    #[derive(Clone, Debug)]
    enum ExpressionTransition {
        /// Open the expression.
        Open,

        /// Add a new operation to the expression.
        NewOperation(String, Vec<usize>),

        /// Add a new scalar to the expression.
        NewScalar(ScalarValue),

        /// Add a new variable to the expression.
        NewVariable(String),

        /// Set the root node of the expression.
        SetRoot(usize),

        /// Remove the root of the expression.
        TakeRoot,

        /// Acquire a valid index to the root of expression.
        AcquireRoot,

        /// Acquire valid indices to the children of the given node.
        AcquireChildren(usize),

        /// Close the expression, invalidating all currently held indices.
        Close,

        /// Remove all nodes from the expression.
        Clear,
    }

    impl ExpressionTransition {
        /// Indicates if this transition requires that the expression be open.
        fn needs_open(&self) -> bool {
            matches!(
                self,
                ExpressionTransition::NewOperation(_, _)
                    | ExpressionTransition::NewScalar(_)
                    | ExpressionTransition::NewVariable(_)
                    | ExpressionTransition::SetRoot(_)
                    | ExpressionTransition::TakeRoot
                    | ExpressionTransition::AcquireRoot
                    | ExpressionTransition::AcquireChildren(_)
                    | ExpressionTransition::Close
            )
        }
    }

    impl ReferenceStateMachine for ExpressionReference {
        type State = ExpressionReferenceState;
        type Transition = ExpressionTransition;

        fn init_state() -> BoxedStrategy<Self::State> {
            //TODO: randomly initialize state
            Just(Self::State::default()).boxed()
        }

        fn transitions(
            state: &Self::State,
        ) -> BoxedStrategy<Self::Transition> {
            if state.is_open && state.valid_indices.is_empty() {
                let n_valid = state.valid_indices.len();
                prop_oneof![
                    1 => Just(ExpressionTransition::Close),
                    1 => Just(ExpressionTransition::TakeRoot),
                    5 => Just(ExpressionTransition::AcquireRoot),
                    //NOTE: what a scalar value actually is has zero
                    //      bearing on anything so we can just yield a static
                    //      value here without any problems. in the future we
                    //      may have something like a common subexpression
                    //      elimination feature, which would make varying it
                    //      valuable, but for now, we have no reason to do
                    //      anything other than adding a static scalar. this
                    //      is different for variables because string
                    //      interning exists, so varying those does actually
                    //      have an effect
                    7 => Just(ExpressionTransition::NewScalar(
                            ScalarValue::UnsignedInteger(1)
                         )),
                    // 702 possible identifiers is probably enough
                    7 => "[a-z]{1,2}"
                            .prop_map(ExpressionTransition::NewVariable),
                ]
                .boxed()
            } else if state.is_open {
                let n_valid = state.valid_indices.len();
                prop_oneof![
                    1 => Just(ExpressionTransition::Close),
                    1 => Just(ExpressionTransition::TakeRoot),
                    5 => Just(ExpressionTransition::AcquireRoot),
                    //NOTE: what a scalar value actually is has zero
                    //      bearing on anything so we can just yield a static
                    //      value here without any problems. in the future we
                    //      may have something like a common subexpression
                    //      elimination feature, which would make varying it
                    //      valuable, but for now, we have no reason to do
                    //      anything other than adding a static scalar. this
                    //      is different for variables because string
                    //      interning exists, so varying those does actually
                    //      have an effect
                    7 => Just(ExpressionTransition::NewScalar(
                            ScalarValue::UnsignedInteger(1)
                         )),
                    // 702 possible identifiers is probably enough
                    7 => "[a-z]{1,2}"
                            .prop_map(ExpressionTransition::NewVariable),
                    9 => prop::sample::subsequence(
                            state.valid_indices.clone(),
                            0..=n_valid
                         )
                            //NOTE: 702 possible identifiers is
                            //      probably enough
                            .prop_flat_map(|v| ("[A-Z]{1,2}", Just(v)))
                            .prop_map(|(s, v)|
                                ExpressionTransition::NewOperation(s, v)
                            ),
                    1 => prop::sample::select(state.valid_indices.clone())
                            .prop_map(ExpressionTransition::SetRoot),
                    5 => prop::sample::select(state.valid_indices.clone())
                            .prop_map(ExpressionTransition::AcquireChildren),
                ]
                .boxed()
            } else {
                prop_oneof![
                    1 => Just(ExpressionTransition::Clear),
                    9 => Just(ExpressionTransition::Open),
                ]
                .boxed()
            }
        }

        fn preconditions(
            state: &Self::State,
            transition: &Self::Transition,
        ) -> bool {
            if state.is_open ^ transition.needs_open() {
                return false;
            }

            match transition {
                ExpressionTransition::NewOperation(_, children) => {
                    for c in children {
                        if *c >= state.nodes.len()
                            || !state.valid_indices.contains(c)
                        {
                            return false;
                        }
                    }
                }
                ExpressionTransition::SetRoot(node)
                | ExpressionTransition::AcquireChildren(node) => {
                    if *node >= state.nodes.len()
                        || !state.valid_indices.contains(node)
                    {
                        return false;
                    }
                }
                _ => (),
            }
            true
        }

        fn apply(
            mut state: Self::State,
            transition: &Self::Transition,
        ) -> Self::State {
            match transition {
                ExpressionTransition::Open => state.is_open = true,
                ExpressionTransition::Clear => {
                    state.nodes.clear();
                    state.children.clear();
                    state.root = None;
                }
                ExpressionTransition::Close => {
                    state.valid_indices.clear();
                    state.is_open = false;
                }
                ExpressionTransition::SetRoot(index) => {
                    state.root = Some(*index);
                }
                ExpressionTransition::TakeRoot => {
                    state.root = None;
                }
                ExpressionTransition::NewVariable(s) => {
                    state.nodes.push(NodeRep::Variable(s.clone()));
                    let i = state.nodes.len() - 1;
                    state.valid_indices.push(i);
                    state.children.insert(i, Vec::new());
                }
                ExpressionTransition::NewScalar(v) => {
                    state.nodes.push(NodeRep::Scalar(v.clone()));
                    let i = state.nodes.len() - 1;
                    state.valid_indices.push(i);
                    state.children.insert(i, Vec::new());
                }
                ExpressionTransition::AcquireRoot => {
                    if let Some(root) = state.root {
                        state.valid_indices.push(root);
                    }
                }
                ExpressionTransition::AcquireChildren(i) => {
                    state.valid_indices.extend(&state.children[i]);
                }
                ExpressionTransition::NewOperation(s, c) => {
                    state.nodes.push(NodeRep::Operation(s.clone()));
                    let i = state.nodes.len() - 1;
                    state.children.insert(i, c.clone());
                    state.valid_indices.push(i);
                }
            }
            state
        }
    }

    /// Wrapper around an [`Expression`] indicating if it is open or not.
    enum ExpressionWrapper<'id, A = Global>
    where
        A: Allocator + Clone,
    {
        /// Closed expression..
        Closed(Expression<A>),

        /// Open expression and a mapping from the state machine's indices to
        /// the [`Expression`]'s.
        Open(HashMap<usize, NodeIndex<'id>>, OpenExpression<'id, A>),
    }

    impl<'id> StateMachineTest for ExpressionWrapper<'id> {
        type SystemUnderTest = Self;
        type Reference = ExpressionReference;

        fn init_test(
            _ref_state: &<Self::Reference as ReferenceStateMachine>::State,
        ) -> Self::SystemUnderTest {
            //TODO: randomly initialize state in the reference and replicate
            //      it over here.
            ExpressionWrapper::Closed(Expression::new())
        }

        fn apply(
            mut state: Self::SystemUnderTest,
            ref_state: &<Self::Reference as ReferenceStateMachine>::State,
            transition: ExpressionTransition,
        ) -> Self::SystemUnderTest {
            match transition {
                ExpressionTransition::Open => {
                    if let ExpressionWrapper::Closed(closed_state) = state {
                        //SAFETY: unfortunately, we have to do this,
                        //        otherwise this test cannot work out due to
                        //        lifetime issues
                        let guard = unsafe { Guard::new(Id::new()) };
                        state = ExpressionWrapper::Open(
                            HashMap::new(),
                            closed_state.open(guard),
                        );
                    } else {
                        unreachable!();
                    }
                }
                ExpressionTransition::Clear => {
                    if let ExpressionWrapper::Closed(closed_state) =
                        &mut state
                    {
                        closed_state.clear();

                        //NOTE: post-conditions
                        assert!(
                            closed_state.inner.is_empty(),
                            "inner node vector should be empty after clearing"
                        );
                        assert!(
                            closed_state.interns.is_empty(),
                            "intern vector should be empty after clearing"
                        );
                        assert!(
                            closed_state.root.is_none(),
                            "root node should not exist after clearing"
                        );
                    } else {
                        unreachable!();
                    }
                }
                ExpressionTransition::Close => {
                    if let ExpressionWrapper::Open(_, open_state) = state {
                        state = ExpressionWrapper::Closed(open_state.close());
                    } else {
                        unreachable!();
                    }
                }
                ExpressionTransition::SetRoot(index) => {
                    if let ExpressionWrapper::Open(mapping, open_state) =
                        &mut state
                    {
                        open_state.set_root_node(mapping[&index]);

                        //NOTE: post-conditions
                        assert_eq!(
                            open_state.0.root,
                            Some(NodeIndexInternal(mapping[&index].0)),
                            "root should be set to the given index after setting it"
                        );
                    } else {
                        unreachable!();
                    }
                }
                ExpressionTransition::TakeRoot => {
                    if let ExpressionWrapper::Open(_, open_state) = &mut state
                    {
                        let root_before = open_state.0.root;
                        let taken_root = open_state
                            .take_root_node()
                            .map(|r| NodeIndexInternal(r.0));

                        //NOTE: post-conditions
                        assert!(
                            open_state.0.root.is_none(),
                            "root should be None after taking it"
                        );
                        assert_eq!(
                            root_before, taken_root,
                            "root before taking and returned root value from taking should be equal"
                        );
                    } else {
                        unreachable!();
                    }
                }
                ExpressionTransition::NewVariable(s) => {
                    if let ExpressionWrapper::Open(mapping, open_state) =
                        &mut state
                    {
                        let var = open_state
                            .insert_variable(&s)
                            .expect("inserting a variable should not fail");
                        mapping.insert(ref_state.nodes.len() - 1, var);

                        let position = open_state.0.interns.iter().position(|t| t == s.as_str()).expect("the interns list should contain the name of the inserted variable");
                        assert_matches!(
                            open_state.0.inner[var.0],
                            NodeInternal::Variable(position),
                            "the variable node should point to the position of the equivalent string in the intern list"
                        );
                    } else {
                        unreachable!();
                    }
                }
                ExpressionTransition::NewScalar(v) => {
                    if let ExpressionWrapper::Open(mapping, open_state) =
                        &mut state
                    {
                        let scalar = open_state
                            .insert_scalar(v)
                            .expect("inserting a scalar should not fail");
                        mapping.insert(ref_state.nodes.len() - 1, scalar);
                        assert_matches!(
                            &open_state.0.inner[scalar.0],
                            NodeInternal::Scalar(v),
                            "the scalar node should contain the same value as was inserted"
                        );
                    } else {
                        unreachable!();
                    }
                }
                ExpressionTransition::NewOperation(s, c) => {
                    if let ExpressionWrapper::Open(mapping, open_state) =
                        &mut state
                    {
                        let operation = open_state
                            .insert_operation(
                                &s,
                                c.iter().copied().map(|i| mapping[&i]),
                            )
                            .expect("inserting an operation should not fail");
                        mapping.insert(ref_state.nodes.len() - 1, operation);

                        let position = open_state.0.interns.iter().position(|t| t == s.as_str()).expect("the interns list should contain the name of the inserted operation");
                        if c.len() == 2 {
                            assert_matches!(
                                open_state.0.inner[operation.0],
                                NodeInternal::BinaryOperation(position, _, _),
                                "the operation node should point to the position of the equivalent string in the intern list",
                            );
                        } else {
                            assert_matches!(
                                open_state.0.inner[operation.0],
                                NodeInternal::Operation(position, _),
                                "the operation node should point to the position of the equivalent string in the intern list",
                            );
                        }
                        //TODO: validate join nodes, child node equality
                    } else {
                        unreachable!();
                    }
                }
                ExpressionTransition::AcquireRoot => {
                    if let ExpressionWrapper::Open(mapping, open_state) =
                        &mut state
                    {
                        let root = open_state.root_node();
                        assert_eq!(
                            ref_state.root.is_some(),
                            root.is_some(),
                            "both the reference state and system under test must match"
                        );

                        if let Some(root) = root
                            && let Some(ref_root) = ref_state.root
                        {
                            mapping.insert(ref_root, root);
                        }
                    } else {
                        unreachable!();
                    }
                }
                ExpressionTransition::AcquireChildren(i) => {
                    if let ExpressionWrapper::Open(mapping, open_state) =
                        &mut state
                    {
                        mapping.extend(
                            ref_state.children[&i]
                                .iter()
                                .copied()
                                .zip(open_state.children_of(mapping[&i])),
                        );
                    } else {
                        unreachable!();
                    }
                }
            }
            state
        }

        fn check_invariants(
            state: &Self::SystemUnderTest,
            ref_state: &<Self::Reference as ReferenceStateMachine>::State,
        ) {
            let expr = match state {
                ExpressionWrapper::Open(_, expr) => &expr.0,
                ExpressionWrapper::Closed(expr) => expr,
            };

            let mut deduplicated_interns = expr.interns.clone();
            deduplicated_interns.sort();
            deduplicated_interns.dedup();
            assert!(
                deduplicated_interns.len() == expr.interns.len(),
                "there must be no duplicated string interns"
            );

            for node in &expr.inner {
                match node {
                    NodeInternal::Operation(i, Some(n)) => {
                        assert!(
                            i.0 < expr.interns.len(),
                            "intern index must be valid"
                        );
                        assert!(
                            n.0 < expr.inner.len(),
                            "node index must be valid"
                        );
                    }
                    NodeInternal::BinaryOperation(i, n1, n2) => {
                        assert!(
                            i.0 < expr.interns.len(),
                            "intern index must be valid"
                        );
                        assert!(
                            n1.0 < expr.inner.len(),
                            "node index must be valid"
                        );
                        assert!(
                            n2.0 < expr.inner.len(),
                            "node index must be valid"
                        );
                        assert!(
                            !matches!(
                                expr.inner[n1.0],
                                NodeInternal::Join(_, _)
                            ),
                            "binary operations must not reference joins"
                        );
                        assert!(
                            !matches!(
                                expr.inner[n2.0],
                                NodeInternal::Join(_, _)
                            ),
                            "binary operations must not reference joins"
                        );
                    }
                    NodeInternal::Join(n1, n2) => {
                        assert!(
                            n1.0 < expr.inner.len(),
                            "node index must be valid"
                        );
                        assert!(
                            !matches!(
                                expr.inner[n1.0],
                                NodeInternal::Join(_, _)
                            ),
                            "operations must not have joins as children"
                        );
                        assert!(
                            n2.0 < expr.inner.len(),
                            "node index must be valid"
                        );
                    }
                    NodeInternal::Variable(i) => {
                        assert!(
                            i.0 < expr.interns.len(),
                            "intern index must be valid"
                        );
                    }
                    _ => (),
                }
            }

            //TODO: the graph must never contain a cycle.
            //TODO: validate the layout of the entire expression against the
            //      reference.
        }
    }

    prop_state_machine! {
        #![proptest_config(ProptestConfig {
            // allow more rejects to make shrinking results better
            max_global_rejects: 1_000_000,

            // disable failure persistence so miri works
            #[cfg(miri)]
            failure_persistence: None,
            ..ProptestConfig::default()
        })]

        #[test]
        fn matches_state_machine(sequential 1..100 => ExpressionWrapper);
    }
}