about summary refs log tree commit diff stats
path: root/crates/core/src/hive/mod.rs
blob: ad1472594c5a75af21bc114e11869ecc04aff367 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
//! An implementation of a bucket array type following the approach used in
//! the [C++26 `hive`](https://eel.is/c++draft/hive) structure.

//TODO: traits to implement for `Hive`:
//      - Ord - Eq - Clone - Debug - Deref<Target=[T]> (?) - AsRef - Borrow
//      - AsMut - Extend - From [array, slice, vec, etc...] - FromIterator
//      - Hash - IntoIterator - Index - IndexMut
//      - PartialEq [array, slice, vec, etc...] - PartialOrd - Write
//TODO: define zero-sized-type handling in `Hive`
//TODO: define situations where we panic
//TODO: consider factoring out code that does not care about the type
//      parameters into a separate struct to reduce the amount of code
//      generated, akin to what the standard library does with `RawVec` and
//      `RawVecInner`
//TODO: try_reserve_exact, reserve_exact

use alloc::alloc::{Allocator, Global, Layout};
use core::{cmp, mem, ptr::NonNull};

#[cfg(feature = "core-fmt")]
use core::fmt;

#[cfg(feature = "core-error")]
use core::error;

pub mod group;
pub mod skipfield;

/// An implementation of a bucket array using a skipfield.
#[cfg_attr(feature = "core-fmt", derive(Debug))]
pub struct Hive<T, Sk = u16, A = Global>
where
    Sk: skipfield::SkipfieldType,
    A: Allocator,
{
    /// Head of the doubly linked list of groups with erased elements
    head_with_erasures: Option<NonNull<group::Group<T, Sk>>>,

    /// Head of the singly linked list of unused groups
    unused_head: Option<NonNull<group::Group<T, Sk>>>,

    /// Number of occupied element spaces
    size: usize,

    /// Total number of element spaces available
    capacity: usize,

    /// Minimum capacity of new [`Group`]s
    min_block_capacity: Sk,

    /// Maximum capacity of new [`Group`]s
    max_block_capacity: Sk,

    /// The allocator used by this [`Hive`].
    alloc: A,
}

impl<T, Sk> Hive<T, Sk, Global>
where
    Sk: skipfield::SkipfieldType,
{
    /// Constructs a new, empty `Hive<T, Sk>`.
    ///
    /// No allocations are performed until elements are inserted.
    pub fn new() -> Self {
        Self::new_in(Global)
    }

    /// Constructs a new, empty `Hive<T, Sk>` with at least the specified
    /// capacity.
    ///
    /// The hive will be able to hold at least `capacity` elements without
    /// reallocating. This method is allowed to allocate for more elements
    /// than `capacity`. If `capacity` is zero, the hive will not
    /// allocate.
    ///
    /// # Panics
    ///
    /// Panics if the allocator reports allocation failure or if the capacity
    /// exceeds `isize::MAX` bytes.
    #[cfg(feature = "core-fmt")]
    pub fn with_capacity(capacity: usize) -> Self {
        Self::with_capacity_in(capacity, Global)
    }

    /// Constructs a new, empty `Hive<T, Sk>` with at least the specified
    /// capacity.
    ///
    /// The hive will be able to hold at least `capacity` elements without
    /// reallocating. This method is allowed to allocate for more elements
    /// than `capacity`. If `capacity` is zero, the hive will not
    /// allocate.
    ///
    /// # Errors
    ///
    /// Returns an error if the allocator reports allocation failure or if the
    /// capacity exceeds `isize::MAX` bytes.
    pub fn try_with_capacity(capacity: usize) -> Result<Self, Error> {
        Self::try_with_capacity_in(capacity, Global)
    }
}

impl<T, Sk, A> Hive<T, Sk, A>
where
    Sk: skipfield::SkipfieldType,
    A: Allocator,
{
    /// Function returning the default bounds for individual [`Group`]
    /// capacity
    ///
    /// These are borrowed from [here], as those bounds were determined
    /// according to benchmarking results. However, they have not been
    /// replicated against this implementation of the concept.
    ///
    /// [here]: https://github.com/mattreecebentley/plf_hive/blob/main/plf_hive.h#L293-L307
    fn default_group_capacity_bounds() -> (Sk, Sk)
    where
        Sk: skipfield::SkipfieldType,
    {
        let max_capacity = cmp::min(
            cmp::min(Sk::MAXIMUM, Sk::from_usize(8192)),
            Sk::from_isize(isize::MAX),
        );
        let adaptive_size = (mem::size_of::<Self>()
            + mem::size_of::<group::Group<T, Sk>>() * 2)
            / group::Group::<T, Sk>::ELEMENT_ALLOCATION_SIZE;
        let min_capacity = cmp::max(
            Sk::from_usize(8usize),
            cmp::min(Sk::from_usize(adaptive_size), max_capacity),
        );

        //NOTE: anything that calls `panic` indirectly or does anything that
        // touches standard output      requires core::fmt :skull:
        #[cfg(feature = "core-fmt")]
        debug_assert!(
            max_capacity >= min_capacity,
            "maximum capacity bound is greater than or equal to the minimum capacity bound"
        );

        (min_capacity, max_capacity)
    }

    /// Constructs a new, empty `Hive<T, Sk, A>`.
    ///
    /// No allocations are performed until elements are inserted.
    pub fn new_in(alloc: A) -> Self {
        let (min_block_capacity, max_block_capacity) =
            Self::default_group_capacity_bounds();
        Self {
            head_with_erasures: None,
            unused_head: None,
            size: 0,
            capacity: 0,
            min_block_capacity,
            max_block_capacity,
            alloc,
        }
    }

    /// Constructs a new, empty `Hive<T, Sk, A>` with at least the specified
    /// capacity.
    ///
    /// The hive will be able to hold at least `capacity` elements without
    /// reallocating. This method is allowed to allocate for more elements
    /// than `capacity`. If `capacity` is zero, the hive will not
    /// allocate.
    ///
    /// # Panics
    ///
    /// Panics if the allocator reports allocation failure or if the capacity
    /// exceeds `isize::MAX` bytes.
    #[cfg(feature = "core-fmt")]
    pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
        //PANIC: this is acceptable as the panic is mentioned above and it is
        //       used to assert an invariant.
        #[allow(clippy::expect_used)]
        Self::try_with_capacity_in(capacity, alloc)
            .expect("allocation should not fail")
    }

    /// Constructs a new, empty `Hive<T, Sk, A>` with at least the specified
    /// capacity.
    ///
    /// The hive will be able to hold at least `capacity` elements without
    /// reallocating. This method is allowed to allocate for more elements
    /// than `capacity`. If `capacity` is zero, the hive will not
    /// allocate.
    ///
    /// # Errors
    ///
    /// Returns an error if the allocator reports allocation failure or if the
    /// capacity exceeds `isize::MAX` bytes.
    pub fn try_with_capacity_in(
        capacity: usize,
        alloc: A,
    ) -> Result<Self, Error> {
        let mut hive = Self::new_in(alloc);
        hive.try_reserve(capacity)?;
        Ok(hive)
    }

    /// Reserves capacity for at least `additional` more elements to be
    /// inserted in the given `Hive<T, Sk, A>`.
    ///
    /// The collection may reserve more space to avoid future allocations.
    /// After calling `reserve`, the capacity will be greater than or equal to
    /// `self.len() + additional`. Does nothing if the capacity is already
    /// sufficient.
    ///
    /// # Panics
    ///
    /// Panics if the allocator reports allocation failure or if the new
    /// capacity exceeds `isize::MAX` bytes.
    #[cfg(feature = "core-fmt")]
    pub fn reserve(&mut self, additional: usize) {
        todo!()
    }

    /// Reserves capacity for at least `additional` more elements to be
    /// inserted in the given `Hive<T, Sk, A>`.
    ///
    /// The collection may reserve more space to avoid future allocations.
    /// After calling `reserve`, the capacity will be greater than or equal to
    /// `self.len() + additional`. Does nothing if the capacity is already
    /// sufficient.
    ///
    /// # Errors
    ///
    /// Returns an error if the allocator reports allocation failure or if the
    /// new capacity exceeds `isize::MAX` bytes.
    pub fn try_reserve(&mut self, additional: usize) -> Result<(), Error> {
        todo!()
    }

    /// Checks if the container needs to grow to accommodate `additional` more
    /// elements
    #[inline]
    fn needs_to_grow(&self, additional: usize) -> bool {
        additional > self.capacity.wrapping_sub(self.size)
    }

    /// Grow the `Hive<T, Sk, A>` by the given amount, leaving room for more
    /// elements than necessary.
    ///
    /// # Errors
    ///
    /// Returns an error if the allocator reports allocation failure or if the
    /// new capacity exceeds `isize::MAX` bytes.
    fn grow_amortized(&mut self, additional: usize) -> Result<(), Error> {
        #[cfg(feature = "core-fmt")]
        debug_assert!(
            additional > 0,
            "at least space enough for one element will be added"
        );

        if mem::size_of::<T>() == 0 {
            //NOTE: akin to raw_vec in alloc, if we get here with a zero
            //      sized type, since the capacity is definitionally full when
            //      it is holding one, the hive would necessarily
            //      be overfull
            return Err(Error::CapacityOverflow);
        }

        todo!()
    }
}

impl<T, Sk> Default for Hive<T, Sk, Global>
where
    Sk: skipfield::SkipfieldType,
{
    fn default() -> Self {
        Self::new()
    }
}

/// Representation of an error that occurred within [`Hive`].
#[non_exhaustive]
#[derive(Eq, PartialEq)]
#[cfg_attr(feature = "core-fmt", derive(Debug))]
pub enum Error {
    /// Allocation size exceeded `isize::MAX`.
    CapacityOverflow,

    /// Unspecified allocation error.
    ///
    /// The layout used during allocation is provided for troubleshooting
    /// where that is possible. Ideally, future revisions of the
    /// `allocator_api` feature will provide more information in `AllocError`
    /// but for now this is all we can do.
    #[non_exhaustive]
    AllocError {
        /// Layout of the failed allocation.
        layout: Layout,
    },
}

#[cfg(feature = "core-fmt")]
impl fmt::Display for Error {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
        fmt.write_str("memory allocation failed")?;
        let reason = match self {
            Error::CapacityOverflow => {
                " because the computed capacity exceeded the hive's maximum"
            }
            Error::AllocError { .. } => {
                " because the memory allocator returned an error"
            }
        };
        fmt.write_str(reason)
    }
}

#[cfg(feature = "core-error")]
impl error::Error for Error {}

/// Guard function ensuring that we don't overflow `isize::MAX`.
///
/// The Rust standard library has a similar function, found [here]. However,
/// that implementation of it ignores the check on platforms with a `usize`
/// wider than 64 bits. This is probably fine, as no platform Rust supports
/// has a virtual address space larger than 8 EiB, but out of caution, we
/// always make the check here.
///
/// [here]: https://github.com/rust-lang/rust/blob/a27f3e3fd1e4d16160f8885b6b06665b5319f56c/library/alloc/src/raw_vec/mod.rs#L802-L817
#[inline]
fn alloc_guard(alloc_size: usize) -> Result<(), Error> {
    //TODO: consider predicating this check over `usize::BITS < 64` as the
    //      rust std does. only do this if it has a measurable performance
    //      impact
    if alloc_size > isize::MAX as usize {
        Err(Error::CapacityOverflow)
    } else {
        Ok(())
    }
}