about summary refs log tree commit diff stats
path: root/crates/core/src/numerics/mod.rs
blob: 9e3d782805f52e0fe244f587a5f587b5f0a5508e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
//! Number traits and utilities.

use core::{
    mem,
    ops::{
        Add, AddAssign, Div, DivAssign, Mul, MulAssign, Rem, RemAssign, Sub,
        SubAssign,
    },
};

pub mod rational;

//NOTE: these should probably be broken up a bunch; they're only implemented
//      this way because i didn't really need much else to implement
//      rationals. ideally we should break them up on the lines of rings,
//      groups, fields, unique factorization domains, principal ideal domains,
//      ordered rings, etc. this would make further extensions to
//      functionality in azimuth easier.

/// Integer.
pub trait Integer:
    Eq
    + Ord
    + Mul<Output = Self>
    + Div<Output = Self>
    + Add<Output = Self>
    + Sub<Output = Self>
    + Rem<Output = Self>
    + MulAssign
    + DivAssign
    + AddAssign
    + SubAssign
    + RemAssign
    + Sized
    + Copy
    + Clone
{
    //NOTE: `Neg` is neglected here as the primary purpose of this trait is
    //      to abstract over integers for the `Rational` type. as stated
    //      above, i'd like to adjust the way all of this works anyway for
    //      future extensions, but for now, we don't really need it.

    //NOTE: `Copy` is required for now as bignum support is not a requirement
    //      yet and this makes implementation simpler.

    /// Additive identity.
    const ZERO: Self;

    /// Multiplicative identity.
    const ONE: Self;

    /// Maximum attainable value.
    const MAX: Self;

    /// Minimum attainable value.
    const MIN: Self;

    /// Calculates the greatest common divisor of this number and another
    fn gcd(&self, rhs: &Self) -> Self;
}

/// Helper macro for the implementation of `Integer`
macro_rules! integer_impl {
    ($type:ty, $zero:expr, $one:expr, $max:expr, $min:expr) => {
        impl Integer for $type {
            const ZERO: Self = $zero;
            const ONE: Self = $one;
            const MAX: Self = $max;
            const MIN: Self = $min;

            #[inline]
            fn gcd(&self, rhs: &Self) -> Self {
                let mut m = *self;
                let mut n = *rhs;

                if m < n {
                    mem::swap(&mut m, &mut n);
                }

                while n != 0 {
                    let t = n;
                    n = m % n;
                    m = t;
                }

                m
            }
        }
    };
}

integer_impl!(i8, 0, 1, i8::MAX, i8::MIN);
integer_impl!(i16, 0, 1, i16::MAX, i16::MIN);
integer_impl!(i32, 0, 1, i32::MAX, i32::MIN);
integer_impl!(i64, 0, 1, i64::MAX, i64::MIN);
integer_impl!(i128, 0, 1, i128::MAX, i128::MIN);

integer_impl!(u8, 0, 1, u8::MAX, u8::MIN);
integer_impl!(u16, 0, 1, u16::MAX, u16::MIN);
integer_impl!(u32, 0, 1, u32::MAX, u32::MIN);
integer_impl!(u64, 0, 1, u64::MAX, u64::MIN);
integer_impl!(u128, 0, 1, u128::MAX, u128::MIN);